Fundamental ways the Moon differs from the Earth

- Highly volatile elements are effectively absent in minerals on the Moon
 - <1 ppb H$_2$O
 - No H-bearing minerals. No hydrous (OH) or hydrated (H$_2$O) minerals. No clays, micas, or amphiboles.

- Volatile elements are depleted relative to Earth
 - Less Na

- The oxygen fugacity (f_{O_2}) is much lower on the Moon
 - On Earth, most iron occurs as Fe$^{3+}$ and Fe$^{2+}$.
 - On the Moon, most iron occurs as Fe$^{2+}$, with some Fe0. There is no Fe$^{3+}$.

Minerals

A mineral is:

- naturally occurring
- inorganic

A mineral has:

- characteristic chemical composition
- regular internal order
Minerals

A mineral is:

- naturally occurring
- inorganic

A mineral has:

- characteristic chemical composition
- regular internal order

✔ Diagnostic characteristics

- color
- crystal form
- hardness
- cleavage
- fracture
- specific gravity (SG)
- melting temperature (T_M)
Minerals: cleavage

- Cleavage describes the propensity of a mineral to break along preferred orientations.
- It is controlled by the internal order, or crystal structure, of a mineral.
- Described by the quality, the number of planes, and the angle between planes.
Minerals: fracture

Uneven fracture

Conchoidal fracture
Minerals: hardness

- Mohs is a relative scale of hardness measured by scratching.
- Knoop (and others) are absolute scales of indentation.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Mohs (KHN value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium Carbide (TiC)</td>
<td>9 Corundum</td>
</tr>
<tr>
<td>Silicon Carbide (SiC), Silicon Nitride (Si3N4)</td>
<td>8 Topaz (1250)</td>
</tr>
<tr>
<td>Sapphire (Al2O3)</td>
<td>7 Quartz (710[a], 790[b])</td>
</tr>
<tr>
<td>Silica (SiO2)</td>
<td>6 Orthoclase (560)</td>
</tr>
<tr>
<td>52100 Bearing Steel, Silicon 440C Stainless Steel (HRC60)</td>
<td>5 Apatite [360[a], 430[b]]</td>
</tr>
<tr>
<td>Ti-6Al-4V</td>
<td>4 Fluorite (163)</td>
</tr>
<tr>
<td>304 Stainless Steel</td>
<td>3 Calcite (135)</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>2 Gypsum (32)</td>
</tr>
<tr>
<td>Aluminum</td>
<td>1 Talc</td>
</tr>
<tr>
<td>Gray PVC</td>
<td>10</td>
</tr>
<tr>
<td>Plastics</td>
<td>20</td>
</tr>
</tbody>
</table>

[a = parallel and b = perpendicular to axis]
Minerals: hardness

- Olivine
- Na-plagioclase
- Ca-plagioclase
Minerals: Solid Solutions

Plagioclase feldspar

The most abundant mineral in the lunar highlands.

Albite \(\text{NaAlSi}_3\text{O}_8 \)

Anorthite \(\text{CaAl}_2\text{Si}_2\text{O}_8 \)

1 atmosphere diagram, from Bowen (1913)
Minerals: Solid Solutions

Plagioclase feldspar

The most abundant mineral in the lunar highlands.

Albite \(\text{NaAlSi}_3\text{O}_8 \)

Anorthite \(\text{CaAl}_2\text{Si}_2\text{O}_8 \)

1 atmosphere diagram, from Bowen (1913)
Plagioclase feldspar

The most abundant mineral in the lunar highlands.

Albite \(\text{NaAlSi}_3\text{O}_8 \)

Anorthite \(\text{CaAl}_2\text{Si}_2\text{O}_8 \)

Most highlands plagioclase is \(\text{An}_{94-99} \)

1 atmosphere diagram, from Bowen (1913)
Minerals: Solid Solutions

Plagioclase feldspar

The most abundant mineral in the lunar highlands.

Albite \(\text{NaAlSi}_3\text{O}_8 \)

Anorthite \(\text{CaAl}_2\text{Si}_2\text{O}_8 \)

Most highlands plagioclase is \(\text{An}_{94-99} \)

Most simulant plagioclase is \(<\text{An}_{80} \)

1 atmosphere diagram, from Bowen (1913)
Minerals: Solid Solutions

Olivine
\((\text{Mg,Fe})_2\text{SiO}_4\)

Forsterite \(\text{Mg}_2\text{SiO}_4\)

Fayalite \(\text{Fe}_2\text{SiO}_4\)

Most lunar olivine is \(\text{Fo}_{30-80}\).

1 atmosphere diagram, from Bowen & Schairer (1935)
Pyroxene
(Ca,Mg,Fe)\(_2\)Si\(_2\)O\(_6\)

Clinopyroxene series
Ca(Mg,FeO)Si\(_2\)O\(_6\)

Orthopyroxene series
(Mg,Fe)\(_2\)Si\(_2\)O\(_6\)

Pyroxene quadrilateral and classification fields
Minerals: Solid Solutions

Pyroxene
\((\text{Ca,Mg,Fe})_2\text{Si}_2\text{O}_6\)

Clinopyroxene series
\(\text{Ca(Mg,FeO)}\text{Si}_2\text{O}_6\)

Orthopyroxene series
\((\text{Mg,Fe})_2\text{Si}_2\text{O}_6\)

Approximate solidus temperatures of endmember pyroxenes, from Huebner and Turnock (1980, figure 9)
Minerals: Solid Solutions

Pyroxene
(Ca,Mg,Fe)$_2$Si$_2$O$_6$

Clinopyroxene series
Ca(Mg,FeO)Si$_2$O$_6$

Orthopyroxene series
(Mg,Fe)$_2$Si$_2$O$_6$

Minerals: Oxide minerals

<table>
<thead>
<tr>
<th>Spinel minerals</th>
<th>Ilmenite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinel</td>
<td>Fe^{2+}TiO_3</td>
</tr>
<tr>
<td>Hercynite</td>
<td>Hematite</td>
</tr>
<tr>
<td>Ulvöspinel</td>
<td></td>
</tr>
<tr>
<td>Chromite</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td></td>
</tr>
</tbody>
</table>

- **Spinel minerals**
 - Spinel: Mg_2Al_2O_4
 - Hercynite: Fe_2Al_2O_4
 - Ulvöspinel: TiFe^{2+}_2O_4
 - Chromite: Fe^{2+}_2Cr_2O_4
 - Magnetite: Fe^{2+}Fe^{3+}_3O_4
Minerals: Oxide minerals

Spinel minerals
- Spinel: $\text{Mg}_2\text{Al}_2\text{O}_4$
- Hercynite: $\text{Fe}_2\text{Al}_2\text{O}_4$
- Ulvöspinel: $\text{TiFe}^{2+}_2\text{O}_4$
- Chromite: $\text{Fe}^{2+}_2\text{Cr}_2\text{O}_4$
- Magnetite: $\text{Fe}^{2+}\text{Fe}^{3+}_3\text{O}_4$

Ilmenite
- Ilmenite: $\text{Fe}^{2+}\text{TiO}_3$
- Hematite: $\text{Fe}^{3+}_2\text{O}_3$

There is almost always Fe^{3+} in terrestrial oxide minerals, and it may be the dominant species. It does not occur in lunar rocks.
Minerals: Phosphates

Apatite

- Fluorapatite \(\text{Ca}_5(\text{PO}_4)_3\text{F} \)
- Chlorapatite \(\text{Ca}_5(\text{PO}_4)_3\text{Cl} \)
- Hydroxyapatite \(\text{Ca}_5(\text{PO}_4)_3\text{OH} \)

Whitlockite (merrillite)

- \(\text{Ca}_{16} (\text{Mg,Fe}^{2+})_2 (\text{*REE})(\text{PO}_4)_{14} \)

Rare Earth Element
Minerals: Phosphates

Apatite
- **Fluorapatite** $\text{Ca}_5(\text{PO}_4)_3\text{F}$
- **Chlorapatite** $\text{Ca}_5(\text{PO}_4)_3\text{Cl}$
- **Hydroxyapatite** $\text{Ca}_5(\text{PO}_4)_3\text{OH}$ ONLY ON EARTH

Whitlockite (merrillite)
- $\text{Ca}_{16}(\text{Mg,Fe}^{2+})_2(\text{*REE})(\text{PO}_4)_{14}$

Rare Earth Element
Minerals: Specific gravity

Lunar minerals have S.G. from ~2.7 (anorthite plagioclase) to ~4.75 (troilite and ilmenite). Native iron (Fe⁰) has an S.G. of 7.87.

Specific gravity varies by as much as 1 unit within solid solutions as Ca/Na or Mg/Fe changes or as Cr, Ti, Al, etc. substitute.
Minerals: Abrasiveness

A mineral’s abrasiveness is derived from its hardness, cleavage, and fracture.
Minerals

Speaking very generally:

✔ For applications involving melting, reactivity, and spectral reflectance, the chemistry of the minerals matters. Mg/Fe strongly affects melting T and reflectance (Cahill and Lucey, 2007). Ca/Na affects melting T and possibly reflectance.

✔ For some geotechnical behavior, the kind of minerals and the abundance matters (e.g., abrasivessness).

✔ Spinels may be the exception, as the endmembers have substantially different hardness and fracture.

✔ For applications dependent on specific gravity, assemblage and composition matters.
Glass is material that crystallizes from a molten state without developing crystallinity. Thermodynamically, it is disordered like a liquid but is rigidly bound.

Glass on the Moon is either:

- volcanic, which is Mg- and Fe-rich, with variable TiO$_2$, or
- impact-related, in which case it will reflect the composition of the melted material
Glass: How composition affects properties

Glass that concerns us is silica-based (35-75 wt.% SiO$_2$)

Pure SiO$_2$ glass is amorphous but highly polymerized.
It is viscous and relatively unreactive.

Elements may join the network (Al$^{3+}$) or modify (Na$^+$, K$^+$).
These will change viscosity, reactivity, and thermal response.
Glass does not have an ordered internal structure, and thus has no single melting point.

- Annealing point, at which its internal strain is relaxed
- Softening point, at which it can be worked, and a
- Molten point, at which it is entirely liquid.

These points may spread over 100’s or >1000° C.

These position of these points depend on composition (e.g., Mg/Fe, the presence of flux elements like Na, B...).
Rock

✦ A rock is a naturally occurring solid aggregate of consolidated minerals, with or without glass.

✦ Igneous rocks are those that cool from magmas.
 – volcanic rocks erupt and cool quickly; they are fine-grained and may be glassy
 – plutonic rocks cool underground and develop coarser crystals

✦ Rocks are classified by their mineral contents or their chemistry.
International Union of Geological Sciences (IUGS) classification

Relative amounts of:

plagioclase

clinopyroxene (Ca-bearing)

orthopyroxene (little to no Ca)
(IUGS) classification

Relative proportions of plagioclase, total pyroxene, and olivine
Lunar (non-IUGS) classification

You may see this classification from Stöffler et al (1980) used.

It expands the anorthosite to transitional fields by the use of modifiers.
Total alkali-silica diagram ([Na$_2$O+K$_2$O]-SiO$_2$)

Useful for volcanic rocks that are glassy or too fine-grained for mineral identification

T.A.S. diagram after LeBas et al., 1986
Total alkali-silica diagram ([Na\textsubscript{2}O+K\textsubscript{2}O]-SiO\textsubscript{2})

Useful for volcanic rocks that are glassy or too fine-grained for mineral identification.

Terrestrial “basalts” have a range of composition.

T.A.S. diagram after LeBas et al., 1986
Total alkali-silica diagram ([Na$_2$O+K$_2$O]-SiO$_2$)

Useful for volcanic rocks that are glassy or too fine-grained for mineral identification

Terrestrial “basalts” have a range of composition.

Lunar basalts are depleted in alkalis, so this diagram does not discriminate them well.

T.A.S. diagram after LeBas et al., 1986
Impact Rocks

✔ Almost all rocks on the lunar surface have experienced shock and/or thermal effects from impact.

✔ If they were completely molten, then they are, for our proposes, igneous.

✔ If they are partially molten or partially broken, they form a spectrum of *breccias.*
Impact Rocks

Suffice to say, there is a spectrum of rock types with variable shock, crushed rock, and glass.

The effect of these on the reactivity and geomechanical properties of the regolith are unknown.

porous dark matrix breccia
compact dark matrix breccia
porous light matrix breccia
compact light matrix breccia
crystalline matrix breccia
equant plagioclase poikilitic breccia
acicular plagioclase poikilitic breccia
variliolitic basalt-textured breccia
subophitic basalt-textured breccia
intergranular basalt-textured breccia
intersertal basalt-textured breccia
porphyritic basalt-textured breccia
granulite breccia
Agglutinates

- Agglutinates are small glassy breccias formed when micrometeorites (< 1 mm in diameter) strike the lunar regolith.

- They contain minerals, lithic fragments, and vesicles (gas bubbles) in a glass matrix. Agglutinates are typically 10’s of μm to a few mm in size.